Hopf-type bifurcation in the presence of multiple critical eigenvalues

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20 L425
(http://iopscience.iop.org/0305-4470/20/7/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:28

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Hopf-type bifurcation in the presence of multiple critical eigenvalues

G Cicogna \dagger and G Gaeta \ddagger
\dagger Dipartimento di Fisica, Universita di Pisa, piazza Torricelli 2, I-56100 Pisa, Italy \ddagger CRM, Université de Montréal, CP 6128 A, Montreal H3C 3J7, Canada

Received 24 November 1986, in final form 23 February 1987

Abstract

We show that, assuming a 'weak' form of symmetry in the equations, one can have Hopf-type bifurcation of periodic solutions even in the presence of doubly degenerate critical imaginary eigenvalues.

The problem of finding 'Hopf-type' bifurcations of periodic solutions in the presence of multiple critical eigenvalues is the argument of some recent papers [1,2]. The existence of bifurcating periodic solutions can be guaranteed by suitable symmetry conditions, and/or by the introduction of a number of 'control parameters' λ larger than one, in contrast with the case of the classical Hopf problem: this point is discussed in detail in the abovementioned references.

In the present letter, we will consider some cases in which a 'weak' form of symmetry is assumed, in such a way that a bifurcation 'à la Hopf' of periodic solutions, with precisely one real control parameter λ, is ensured.

Let $u=u(t) \in R^{4}$, and consider the non-linear dynamical problem

$$
\begin{equation*}
\mathrm{d} u / \mathrm{d} t=f(\lambda ; u) \quad f(\lambda ; 0)=0 \quad \lambda \in R \tag{1}
\end{equation*}
$$

with the usual smoothness hypothesis on the map $f: R \times R^{4} \rightarrow R^{4}$, and assume that the linear part of f (the prime denotes differentiation)

$$
L(\lambda)=f_{u}^{\prime}(\lambda ; 0)
$$

at the critical point $\lambda=\lambda_{0}$ possesses two imaginary eigenvalues $\sigma=\sigma\left(\lambda_{0}\right)= \pm i \omega_{0}$ with double algebraic and geometrical multiplicity. Assume also that $L\left(\lambda_{0}\right)$ is diagonalisable. Then we can write it in the form

$$
L\left(\lambda_{0}\right)=\omega_{0} K \quad K=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \tag{2}\\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Introducing the usual scaling in the time variable

$$
t \rightarrow \tau=\omega t
$$

in order that solutions $u=u(\tau)$ are 2π-periodic in the variable τ, (1) can be written

$$
\begin{equation*}
\omega \mathrm{d} u / \mathrm{d} \tau=\left(\omega_{0} K+L_{1}(\lambda)\right) u+N(\lambda ; u) \tag{3}
\end{equation*}
$$

where $N(\lambda ; u)$ is the non-linear higher-order part of f.
Our result is then the following.

Theorem. Given the problem (1)-(3), assume that there exists a 4×4 real matrix \hat{S}, possibly depending on λ, such that

$$
\begin{equation*}
\hat{S}^{2}=I \quad(\hat{S} \neq \pm I, \hat{S}=\hat{S}(\lambda)) \tag{4}
\end{equation*}
$$

(I is the identity in R^{4}) and the following 'symmetry condition':

$$
\begin{equation*}
f(\lambda ; \hat{S} u)=\hat{S} f(\lambda ; u) \quad \forall \lambda, u \tag{5}
\end{equation*}
$$

is satisfied. Assume also a standard transversality condition $(\mathrm{d} \operatorname{Re} \sigma / \mathrm{d} \lambda) \neq 0$ at the critical point $\lambda=\lambda_{0}$, where $\sigma(\lambda)$ is the critical branch of eigenvalues. Then a periodic solution of (3) bifurcates at $\lambda=\lambda_{0}$.

We sketch the proof only in the special case in which \hat{S} has the form

$$
\hat{S}=\left(\begin{array}{cc}
0 & S^{-1} \tag{6}\\
S & 0
\end{array}\right)
$$

where $S=S(\lambda)$ is a 2×2 real non-singular matrix: in this particular case in fact the argument is more suggestive and simple.

Let us introduce the notations

$$
\begin{array}{lll}
u \equiv\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in R^{4} & & \\
x \equiv\left(u_{1}, u_{2}\right) \in R^{2} & y \equiv\left(u_{3}, u_{4}\right) \in R^{2} \tag{7}\\
f \equiv\left(f_{1}, f_{2}, f_{3}, f_{4}\right) & X \equiv\left(f_{1}, f_{2}\right) & Y \equiv\left(f_{3}, f_{4}\right) .
\end{array}
$$

The point is now to see that equations (3) possess a Hopf-type bifurcation once the vectors y are chosen to be dependent on the vectors x according to the following coupling rule:

$$
\begin{equation*}
y=S x . \tag{8}
\end{equation*}
$$

In fact, from (5), we obtain the identity

$$
Y(\lambda ; x, S x)=S X(\lambda ; x, S x)
$$

and equations (3) become

$$
\begin{align*}
& \omega \mathrm{d} x / \mathrm{d} \tau=X(\lambda ; x, S x) \\
& \omega \mathrm{d} y / \mathrm{d} \tau=\omega S \mathrm{~d} x / \mathrm{d} \tau=Y(\lambda ; x, S x)=S X(\lambda ; x, S x)
\end{align*}
$$

which shows that the problem is reduced to a two-dimensional problem (the second set of equations is equivalent to the first one). Therefore, standard Hopf techniques can be applied, obtaining a periodic solution of the form

$$
\begin{equation*}
u=u(\tau)=\binom{x(\tau)}{S x(\tau)} . \tag{9}
\end{equation*}
$$

In more detail, as a consequence of assumption (5) and precisely from the commutativity with K, S necessarily has the form

$$
S=p\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \tag{10}\\
-\sin \varphi & \cos \varphi
\end{array}\right)
$$

for some real $\rho=\rho(\lambda)>0$ and $\varphi=\varphi(\lambda)$. This implies that the bifurcating solution can be written in the form

$$
\begin{array}{llrl}
u & =u(\tau)=r \hat{v}(\tau)+\mathrm{O}\left(r^{2}\right) & \tau & =\omega t \\
\lambda & =\lambda(r) & \text { with } & \lambda(0)=\lambda_{0} \tag{11}\\
\omega & =\omega(r) & \text { with } & \omega(0)=\omega_{0}
\end{array}
$$

where the first-order term $\hat{v}(\tau)$ is

$$
\hat{v}(\tau)=\left(\begin{array}{c}
\cos \omega t \\
-\sin \omega t \\
\rho(\lambda) \cos (\omega t+\varphi(\lambda)) \\
-\rho(\lambda) \sin (\omega t+\varphi(\lambda))
\end{array}\right) .
$$

It can be useful-in order to keep as far as possible all these results in a unified context-to rephrase the main point of this letter in the language of [1]. In fact, our matrix \hat{S} generates an action of the group Z_{2}, and f commutes with this (5). Under this action, on the other hand, Z_{2} itself is an isotropy subgroup, and the fixed-point subspace for this group turns out to be two-dimensional: if S has the form (6), this subspace is the set (see (8)) of the vectors $\{(x, S x)\}$. As in [1], the dynamics leaves this two-dimensional space invariant and there a standard Hopf bifurcation is produced. All this clearly shows, not only the role of symmetry in our result, but also the relationship with the general pattern described in [1].

Just to give an explicit example where all the above assumptions are satisfied, consider the problem

$$
\begin{aligned}
\omega \mathrm{d} u / \mathrm{d} \tau=[& \left.a_{0}(\lambda)+\left(a_{1}(\lambda)+\omega_{0}\right) K\right] u \\
& \quad+\left(4|x|^{2}+|y|^{2}\right)\left(a_{3}(\lambda) u+a_{4}(\lambda) u^{*}\right)
\end{aligned}
$$

where the functions $a_{i}(\lambda)$ are arbitrary, apart from the requirements

$$
a_{0}\left(\lambda_{0}\right)=a_{1}\left(\lambda_{0}\right)=0 \quad \mathrm{~d} a_{0}\left(\lambda_{0}\right) / \mathrm{d} \lambda \neq 0
$$

| | is the R^{2} norm and u^{*} is the vector linearly depending on u defined by

$$
u^{*} \equiv\left(u_{3}+u_{4},-u_{3}+u_{4}, 4\left(u_{1}-u_{2}\right), 4\left(u_{1}+u_{2}\right)\right) .
$$

With this choice, the matrix S has the form (10) with $\rho=2$ and $\varphi=\pi / 4$.
To conclude, let us mention two elementary particular cases which are naturally included in the above scheme. First, if one has in (6) $S=S^{-1}=I$ (the identity in R^{2}), then assumption (5) corresponds to a problem which is symmetric with respect to the exchange $x \leftrightarrow y$: then the bifurcating solution clearly has the form $x=y$, i.e. $u_{1}(\tau)=$ $u_{3}(\tau), u_{2}(\tau)=u_{4}(\tau)$. A second simple instance is obtained if \hat{S} in (5) is

$$
\hat{S}=\left(\begin{array}{rr}
I & 0 \\
0 & -I
\end{array}\right)
$$

(which of course does not fall in the particular case (6), and therefore no coupling of the form (8) between the x and y spaces is now present). Condition (5) means in this case that the function $X(x, y)$ is even and $Y(x, y)$ odd with respect to the variable y going into $-y$; the solution we find is then $y(\tau)=0$, or $u_{3}(\tau)=u_{4}(\tau)=0$.

References

[1] Golubitsky M and Stewart I 1985 Arch. Ration. Mech. Anal. 89107
[2] Cicogna G and Gaeta G 1987 J. Phys. A: Math. Gen. 2079

