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Abstract. We show that, assuming a ‘weak’ form of symmetry in the equations, one can 
have Hopf-type bifurcation of periodic solutions even in the presence of doubly degenerate 
critical imaginary eigenvalues. 

The problem of finding ‘Hopf-type’ bifurcations of periodic solutions in the presence 
of multiple critical eigenvalues is the argument of some recent papers [l, 21. The 
existence of bifurcating periodic solutions can be guaranteed by suitable symmetry 
conditions, and/or by the introduction of a number of ‘control parameters’ A larger 
than one, in contrast with the case of the classical Hopf problem: this point is discussed 
in detail in the abovementioned references. 

In the present letter, we will consider some cases in which a ‘weak’ form of symmetry 
is assumed, in such a way that a bifurcation ‘A la Hopf’ of periodic solutions, with 
precisely one real control parameter A, is ensured. 

Let U = U (  t )  E R4, and consider the non-linear dynamical problem 

du/dt  = f ( A ;  U )  f ( A ; O ) = O  A E R  (1) 

with the usual smoothness hypothesis on the map f: R x R4+ R4, and assume that the 
linear part o f f  (the prime denotes differentiation) 

U A )  = f : ( A ;  0) (1’) 

at the critical point A = A, possesses two imaginary eigenvalues U = a(Ao) = *iwo with 
double algebraic and geometrical multiplicity. Assume also that L( A,) is diagonalisable. 
Then we can write it in the form 

Introducing the usual scaling in the time variable 

t + T = W t  

in order that solutions U = u ( r )  are 2wperiodic in the variable r, (1) can be written 

where N ( A ;  U )  is the non-linear higher-order part of J: 
w du/dr=(W,K+L,(A))u+N(A; U )  (3) 

Our result is then the following. 
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Theorem. Given the problem (1)-(3), assume that there exists a 4 x  4 real matrix 9, 
possibly depending on A, such that 

k 2 =  1 (g#+Z,g=S(A)) (4) 

f ( A ;  &) = &(A; U )  VA, U ( 5 )  

(I is the identity in R4) and the following ‘symmetry condition’: 

is satisfied. Assume also a standard transversality condition (d Re cT/dA) # 0 at the 
critical point A = Ao,  where ~ ( h )  is the critical branch of eigenvalues. Then a periodic 
solution of (3) bifurcates at A = A o .  

We sketch the proof only in the special case in which 3 has the form 

0 s-’ 
s=(s 0 )  

where S=S(A) is a 2 x 2  real non-singular matrix: in this particular case in fact the 
argument is more suggestive and simple. 

Let us introduce the notations 

U =  (U], u 2 ,  u3 ,  u4)e R4  

x = ( u l ,  U 2 ) E R 2  y = ( u 3 ,  U * ) E  R 2  (7)  

f E  ( f i , f 2 , f 3 9 f 4 )  X = U, , f 2 )  y =  ( f 3 , f 4 ) .  

The point is now to see that equations (3) possess a Hopf-type bifurcation once the 
vectors y are chosen to be dependent on the vectors x according to the following 
coupling rule: 

y = sx. (8) 

Y(A; X, Sx) = sx(A; X, SX) 

In fact, from ( 5 ) ,  we obtain the identity 

(8’) 

and equations (3) become 

w dx /d r=X(A;x ,Sx)  

w d y / d r = w S d x / d r =  Y(A; x,Sx)=SX(A;x,Sx)  
( 8? 

which shows that the problem is reduced to a two-dimensional problem (the second 
set of equations is equivalent to the first one). Therefore, standard Hopf techniques 
can be applied, obtaining a periodic solution of the form 

In more detail, as a consequence of assumption (5) and precisely from the commutativity 
with K, S necessarily has the form 

s = p (  C O S Q  s in9  
-sin(c C O S Q  

(10) 
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for Some real p = p ( A )  > 0 and cp = cp(h). This implies that the bifurcating solution can 
be written in the form 

U = U(?)= rV1(T)+O(r2) 7 = w t  

A = A ( r )  with A ( O ) = A o  (11) 

w = w ( r )  with w ( 0 )  = WO 

where the first-order term U * ( ? )  is 
cos ut 

It can be useful-in order to keep as far as possible all these results in a unified 
contextTto rephrase the main point of this letter in the language of [l]. In fact, our 
matrix S generates an action of the group Z2, and f commutes with this ( 5 ) .  Under 
this action, on the other hand, Z2 itself is an isotropy subgroup, and the fixed-point 
subspace for this group turns out to be two-dimensional: if S has the form ( 6 ) ,  this 
subspace is the set (see (8)) of the vectors {(x, Sx)}. As in [l], the dynamics leaves 
this two-dimensional space invariant and there a standard Hopf bifurcation is produced. 
All this clearly shows, not only the role of symmetry in our result, but also the 
relationship with the general pattern described in [l]. 

Just to give an explicit example where all the above assumptions are satisfied, 
consider the problem 
w du /d r  = [a,( A )  + ( a ,  ( A  ) + w , ) K ] u  

+ (41x12+I~12)(~3(A>u + ~ 4 ( A ) u * )  
where the functions a , ( A )  are arbitrary, apart from the requirements 

I I is the R 2  norm and U* is the vector linearly depending on U defined by 

U* E ( U 3  + U4 , - U3 + U4,4( U1 - Uz) ,  4( U ,  + Uz)). 
With this choice, the matrix S has the form (10) with p = 2 and cp = ~ / 4 .  

To conclude, let us mention two elementary particular cases which are naturally 
included in the above scheme. First, if one has in ( 6 )  S = S-' = I (the identity in R 2 ) ,  
then assumption ( 5 )  corresponds to a problem which is symmetric with respect to the 
exchange x - y :  then the bifurcating solution clearly has the form x = y,  i.e. u 1 ( 7 )  = 
u ~ ( T ) ,  u 2 ( 7 )  = u4(7). A second simple instance is obtained if 9 in (5) is 

a o ( A 0 )  = Q I ( A 0 )  = 0 dao(Ao)/dA # 0 

(which of course does not fall in the particular case ( 6 ) ,  and therefore no coupling of 
the form (8) between the x and y spaces is now present). Condition ( 5 )  means in this 
case that the function X ( x ,  y )  is even and Y(x, y )  odd with respect to the variable y 
going into - y ;  the solution we find is then y (  T )  = 0, or u3( T )  = u4( 7) = 0. 
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